Thermal analysis is used to characterize the thermal properties of plastics, such as melting temperature, glass transition temperature, crystallization and thermal conductivity.
For example, the melting temperature, which can be measured by means of differential scanning calorimetry (DSC), plays an important role in the development of battery separators. If the separator melts at high temperatures and the electrodes short-circuit, this can lead to a thermal reaction and an increase in the battery's operating temperature. An increase in operating temperature can affect battery performance and life by accelerating chemical reactions within the battery and accelerating electrolyte decomposition.
Thermogravimetric analysis (TGA) is used to test the stability of plastics at increased temperatures in their operating range.
Dynamic mechanical analysis (DMA) can be employed to predict long-term performance at room temperature or increased temperatures.
Rheological studies help determine the ideal properties of plastics for use in batteries. By analyzing the flow behavior of materials, viscosity, elasticity and plasticity of plastics can be characterized. For example, viscosity is essential in the development of coatings for electrodes, as it affects how evenly the coating is applied and how well it adheres.
Battery Applications by NETZSCH Analyzing & Testing
With a comprehensive product portfolio of thermal analysis instruments and rheometers by NETZSCH Analyzing and Testing, the company supports its customers in determining and selecting the perfect materials for use in their batteries. NETZSCH experts have decades of experience and will work with a client to find the right solution for his individual application.